Collective chemotaxis and segregation of active bacterial colonies.
نویسنده
چکیده
Still recently, bacterial fluid suspensions have motivated a lot of works, both experimental and theoretical, with the objective to understand their collective dynamics from universal and simple rules. Since some species are active, most of these works concern the strong interactions that these bacteria exert on a forced flow leading to instabilities, chaos and turbulence. Here, we investigate the self-organization of expanding bacterial colonies under chemotaxis, proliferation and eventually active-reaction. We propose a simple model to understand and quantify the physical properties of these living organisms which either give cohesion or on the contrary dispersion to the colony. Taking into account the diffusion and capture of morphogens complicates the model since it induces a bacterial density gradient coupled to bacterial density fluctuations and dynamics. Nevertheless under some specific conditions, it is possible to investigate the pattern formation as a usual viscous fingering instability. This explains the similarity and differences of patterns according to the physical bacterial suspension properties and explain the factors which favor compactness or branching.
منابع مشابه
Buckling instability in ordered bacterial colonies.
Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell-cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among...
متن کاملStudies of sector formation in expanding bacterial colonies
– We study sector formation in expanding bacterial colonies grown on a substrate with low level of nutrient. Bursts of sectors are observed both during compact growth on soft agar and during branching growth on semi-solid agar. For theoretical studies of these bursts we employ two mathematical models we have used successfully in the past to study patterning of bacterial colonies: a discrete mod...
متن کاملBranching instability in expanding bacterial colonies.
Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation dur...
متن کاملSelf-similar dynamics of bacterial chemotaxis.
Colonies of bacteria grown on thin agar plate exhibit fractal patterns as a result of adaptation to their environments. The bacterial colony pattern formation is regulated crucially by chemotaxis, the movement of cells along a chemical concentration gradient. Here, the dynamics of pattern formation in a bacterial colony is investigated theoretically through a continuum model that considers chem...
متن کاملFast, high-throughput measurement of collective behaviour in a bacterial population.
Swimming bacteria explore their environment by performing a random walk, which is biased in response to, for example, chemical stimuli, resulting in a collective drift of bacterial populations towards 'a better life'. This phenomenon, called chemotaxis, is one of the best known forms of collective behaviour in bacteria, crucial for bacterial survival and virulence. Both single-cell and macrosco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016